
Research Article Vol. 13, No. 1 / 1 Jan 2022 / Biomedical Optics Express 168

Deep convolutional neural network-based
scatterer density and resolution estimators in
optical coherence tomography

THITIYA SEESAN,1,2 IBRAHIM ABD EL-SADEK,1,3 PRADIPTA
MUKHERJEE,1 LIDA ZHU,1 KENSUKE OIKAWA,1 ARATA
MIYAZAWA,1,4 LARINA TZU-WEI SHEN,5 SATOSHI MATSUSAKA,5

PRATHAN BURANASIRI,2 SHUICHI MAKITA,1 AND YOSHIAKI
YASUNO1,*

1Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
2Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang,
Ladkrabang, Bangkok, Thailand
3Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, Egypt
4Sky Technology Inc., Tsukuba, Ibaraki, Japan
5Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
*yasuno@optlab2.bk.tsukuba.ac.jp
https://optics.bk.tsukuba.ac.jp/COG/

Abstract: We present deep convolutional neural network (DCNN)-based estimators of the tissue
scatterer density (SD), lateral and axial resolutions, signal-to-noise ratio (SNR), and effective
number of scatterers (ENS, the number of scatterers within a resolution volume). The estimators
analyze the speckle pattern of an optical coherence tomography (OCT) image in estimating these
parameters. The DCNN is trained by a large number (1,280,000) of image patches that are fully
numerically generated in OCT imaging simulation. Numerical and experimental validations
were performed. The numerical validation shows good estimation accuracy as the root mean
square errors were 0.23%, 3.65%, 3.58%, 3.79%, and 6.15% for SD, lateral and axial resolutions,
SNR, and ENS, respectively. The experimental validation using scattering phantoms (Intralipid
emulsion) shows reasonable estimations. Namely, the estimated SDs were proportional to the
Intralipid concentrations, and the average estimation errors of lateral and axial resolutions were
1.36% and 0.68%, respectively. The scatterer density estimator was also applied to an in vitro
tumor cell spheroid, and a reduction in the scatterer density during cell necrosis was found.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Speckle is an inevitable phenomenon in the image formation of optical coherence tomography
(OCT) [1]. The speckle is an information carrier that conveys the properties of tissues, such
as the sub-resolution distribution of the scatterers [2] and sub-resolution translation [3,4]. In
addition, speckle carries properties of the imaging system itself, such as the optical resolution [1].
We refer to these properties as “fundamental parameters” in this paper. This information-carrying
nature of the speckle motivates us to measure/estimate the fundamental parameters through the
speckle patterns of an OCT image.

However, the relationship between these parameters and the speckle pattern is complicated, and
it is thus not straightforward to estimate these parameters from the OCT image. This complexity
comes from the image formation process. In principle, OCT imaging processes can be understood
as a combination of two sequential processes. The first process is a forward process in which
the tissue property is encoded into an interference signal. The second process is the backward
process in which the interference signal is processed to form an OCT image, and the OCT
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image is then analyzed to estimate the fundamental parameters. The principle is exemplified
by attenuation coefficient estimation [5–7], signal intensity estimators [8,9], and polarization
parameter estimations of polarization sensitive OCT [10–14].

In general, the forward process is definitive and can be easily modeled, and also can be relatively
easily numerically simulated [15–17]. On the other hand, the backward process is complicated
and hard to be performed. Despite its ease of simulation, the forward process is a physical process
and does not always need to be simulated. In contrast, despite the difficulty, the backward process
should be numerically performed for accurate and quantitative OCT measurement.

Our fundamental idea is to use a deep convolutional neural network (DCNN) to solve the
complicated backward process. In recent years, deep learning [18,19] has been demonstrated
to be a powerful tool in the field of computer vision. Its application in OCT, such as in image
segmentation [20–23], classification [24,25], and denoising [26,27] has been successful. The
DCNN is one of the most established realizations of deep learning, which automatically learns a
hierarchy of increasingly complex features related to the training data sets [28–30]. The DCNN
is a highly nonlinear method and can therefore potentially solve the backward process.

In our approach, the DCNN takes a local (on the order of tens of micrometers) speckle pattern
of an OCT image as an input and outputs fundamental parameters, including the scatterer density
and optical resolution. Here the scatterer density denotes the number of scatterers per unit volume.
However, the DCNN should be trained using a huge training data set, and it is not realistic to
acquire such a huge data set in experiments. We here solve this issue to perform simple numerical
simulations of the forward process. By employing a simple model of the OCT imaging, a huge
number of local speckle patterns are created for several predefined resolutions and scatterer
densities; i.e., the fundamental parameters. These sets of parameters and the generated speckle
patterns are used to train the DCNN. Our strategy is therefore summarized as a backward process
(i.e., estimation of parameters from a local speckle pattern) performed by the DCNN and the
training of the DCNN using a fully numerically generated data set that is generated by simulating
the forward process. These estimators are validated by numerically generated OCT images,
experimentally obtained scattering phantom images, and in vitro tumor spheroid images.

2. Method

2.1. Three-dimensional speckle pattern generator

We generate small volumetric OCT speckle patterns in a simulation based on a simple Fourier
imaging model. A three-dimensional (3D) scatterer distribution map, S(x, y, z), is first generated
stochastically to generate the speckle pattern. Here x and y are lateral positions and z is the depth
position. The 3D scatterer distribution map is a complex 3D numerical array with 128 × 128 ×

128 pixels, where the pixels with a scatterer (i.e., scatterer pixels) have an amplitude of unity and
a random phase whereas the pixels without scatterer have zero values. The scatterer pixels are
randomly selected such that the expectation of the scatterer density of the distribution map is a
particular set value. The random phases of the scatterer pixels represent the randomly distributed
sub-wavelength position of the scatterers.

This 3D scatterer distribution map is then numerically convolved with a 3D complex point
spread function (PSF), PSF(x, y, z), to yield a simulated complex OCT signal G(x, y, z) as

G(x, y, z) ≡ S(x, y, z) ∗ PSF(x, y, z), (1)

where G(x, y, z) is the 3D speckle pattern and ∗ indicates the 3D convolution. The convolution is
computed by a Fast-Fourier-Transform-based method. The PSF is numerically generated as a 3D
Gaussian function with the same physical dimension and pixel numbers as the scatterer density
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map,
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where ∆x and ∆y are the lateral resolutions defined as the 1/e2-width of the squared amplitude
of the PSF. ∆z is the axial resolution defined as the full-width-half-maximum (FWHM) of the
squared amplitude of the PSF. The lateral and axial resolutions are randomly selected, but two
lateral resolutions ∆x and ∆y are selected to be identical. The axial and lateral resolutions are
ones of our estimation target. Additionally, the magnitude of the PSF is randomly selected to
simulate the uncontrolled probe beam power and unknown scattering intensity.

After computing the convolution [Eq. (1)], the 3D numerical field was down-sampled from
128 × 128 × 128 pixels to 16 × 16 × 16 pixels as keeping the original physical field size. After
the down-sampling, we add complex Gaussian noise to each pixel to achieve a randomly but
specifically selected signal-to-noise ratio (SNR) then taking the squared intensity of the 3D OCT
speckle pattern.

The generated 3D speckle pattern covers a 31.2-µm (x) × 31.2-µm (y) × 115.8-µm (z) volume
with 16 × 16 × 16 pixels. So, the physical size of a pixel is 1.95 µm (x) × 1.95 µm (y) × 7.24 µm
(z), while that of the original 128 × 128 × 128-pixel field is 0.24 µm (x) × 0.24 µm (y) × 0.90
µm (z). The pixel separations of the down-sampled speckle field are selected to be identical to
those in our experiment described in Section 2.4. The inputs for the training of the DCNN-based
estimator described in the next section are 2D cross-sectional OCT images, which are the x-z
cross-sections of the 3D numerically generated speckle pattern.

2.2. DCNN-based parameter estimator

2.2.1. Speckle data set

The data set for DCNN training is generated by the 3D speckle pattern generator described in the
previous section. The true parameters are randomly selected with specific ranges of 3 to 30 µm
for the axial and lateral resolutions, 0 to 50 dB for SNR, and 0 to 0.0645 scatterers/µm3 (0 to
1.775 scatterers/pixel3) for the scatterer density. The maximum scatterer density corresponds
to effective numbers of scatterers (ENS) of 33.7 and 76.7 for high- and low-NA objectives,
respectively. Here the ENS is the number of scatterers within a 3D resolution volume, and
see Section 2.4 for the details of the high- and low-NA objectives. The speckle patterns are
normalized by intensity before being input to the DCNN, and the PSF magnitude is thus not a
significant parameter. Each datum in the data set is the combination of the speckle pattern and
the set fundamental parameters.

The training data set consists of 1,280,000 2D cross-sectional speckle patterns extracted from
80,000 3D speckle patterns. The validation data set, which is used to compute the loss during the
training, comprises 160,000 2D speckle patterns extracted from 10,000 3D speckle patterns.

2.2.2. Network architecture and training

Our DCNN model architecture is shown in Fig. 1. The DCNN is input with the 2D cross-sectional
speckle patterns, and it automatically learns the local features of the speckle pattern and estimates
the underlying parameters. The whole network is subdivided into two parts, namely the feature
extraction and the estimation parts.

The input to the feature extraction part is a 2D cross-sectional speckle image with a size of 16
× 16 pixels [input image in Fig. 1]. The input image intensity is normalized to a [0, 1] range
before being input. The first convolution layer (CL1) convolves the image with 32 different filters
having a kernel size of 2 × 2 to obtain a feature map (FM1; 16 × 16 pixels × 32 filters). Here, the
rectified linear unit (ReLU) is used as an activation function. A max-pooling layer (MP1) with
a stride of 2 is applied after the convolution, which fuses nearby spatial information to reduce
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Fig. 1. Architecture of the network used for parameter estimation. CL; convolution layer,
FM; feature map, MP; max-pooling layer, and FC; fully connected layer. The numbers above
the boxes are the sizes of the boxes as pixel × pixel × filters.

the size of the feature map. The second convolution layer (CL2) produces the third feature map
(FM3; 8 × 8 pixels × 64 filters) using 2 × 2-pixel kernels and ReLU activation. After applying a
max-pooling layer with a stride of two (MP2), the third convolutional layer (CL3) generates the
fifth feature map (FM5; 4 × 4 pixels × 128 filters). Finally, the third max-pooling layer (MP3)
makes the final feature map (FM6; 2 × 2 pixels × 128 filters), and feeds the subsequent estimation
part.

The estimation part consists of two fully connected layers of FC1 and FC2 which consist of
512 and 256 neurons, respectively. The final output layer consists of a single neuron and its
output is an estimated fundamental parameter.

We train our neural network models to minimize the mean squared error (MSE) between
ground-truth parameters and network outputs. The network is trained using an Adam optimizer
[31] with a learning rate of 10−4. The batch size of the training was 32. Five independent
networks with the same network architecture are trained for five fundamental parameters, namely
the scatterer density, the lateral and axial resolutions, SNR, and ENS. It is noteworthy that the
SNR is randomized and the signal strength is normalize, and hence, a DCNN might not use this
information to estimate the scatterer density and ENS.

The models are constructed in Python 3.7 with Keras 2.3.1 based on the TensorFlow back end.
The training of each network with a graphical processing unit (GPU; Nvidia GTX1080) takes
about 5-6 min for each epoch. The training is terminated if the loss has not decreased for 10
continuous epochs, and the weights with the minimum loss are selected for the estimator. The
minimum loss is obtained at the 30th, 28th, 27th, 15th and 28th epochs for the scatterer density,
lateral and axial resolutions, SNR, and ENS, respectively.

2.3. Validation methods

The DCNN-based estimators are validated using numerically generated OCT signals, experi-
mentally measured OCT images of the scattering phantom and an in vitro spheroid sample. The
details are as following.

2.3.1. Numerical validation

We evaluated the estimation performances of the DCNN-based estimators using 100 numerically
generated OCT speckle patterns. The speckle patterns are generated with the same method
used to generate the training data set, but they are not included in the training or validation
data set. Each speckle pattern was extracted from a different simulated volume. So, all speckle
patterns are independent of each other and have different fundamental parameters. Here, the
evaluation performances for the scatterer density, ENS, the lateral and axial resolutions, and
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SNR are evaluated. The true values are known for this evaluation, and we can thus obtain the
estimation accuracies.

2.3.2. Validation by scattering phantom measurement

The DCNN-based estimators were validated experimentally by measuring scattering phantoms;
the Intralipid emulsion. In the field of biomedical optics, 20% Intralipid emulsion (IL-20; I141,
Sigma-Aldrich) is frequently used as an optical phantom to mimic the optical properties of
tissue [32]. Six different dilutions were made by mixing the IL-20 with purified water to obtain
concentrations of 1%, 2%, 4%, 6%, 8%, and 10%. Each dilution was then placed in a Petri dish.
Black mending tape was attached at the bottom of the Petri dish to avoid strong specular reflection
from the glass surface. Three samples were made for each concentration, i.e., 18 samples were
made in total.

The scattering of light by Intralipid emulsion is due to the particles of soybean oil and egg
lecithin, and the scattering volume concentration σ of IL-20 is known to be 22.7%(v/v) [33–35].
Hence, the scattering volume concentrations of the 1%, 2%, 4%, 6%, 8%, and 10% dilutions are
0.227 0.454, 0.908, 1.362, 1.816, and 2.27%(v/v), respectively.

2.3.3. Human breast cancer spheroid

The scatterer density estimator was also applied to an in vitro sample. The sample was a human
breast adenocarcinoma spheroid made from MCF7 cell line. The scatterers in the cell are cell
nuclei and cell organelles, and we thus anticipated that the scatterer density was strongly related
to tissue functions.

After 15-day cultivation, spheroids with a size of a few hundred micrometers had formed.
The spheroid was extracted from the culturing environment and placed in a room-temperature
culture medium without CO2 supply. The cell might have been gradually dying because of a
lack of nutrients. We performed OCT measurement every 2 hours up to 28 hours. Note that this
experiment was originally performed for the study described in Ref. [36], and the same data set
was used in the present study.

2.4. OCT setup and measurement protocol

Swept-source OCT with a 1.310 µm wavelength probe beam and a measurement speed of 50,000
A-lines/s was conducted in the experiments [37]. Although the system was polarization-sensitive,
we did not use its polarization functionality. The OCT image used in this study is the coherence
composition of multiple polarization channels (Section 2.3.1 of Ref. [37] and Section 3.8 of Ref.
[38]), which is almost equivalent to a standard OCT image.

Two objectives were used in this study. One has an effective focal length of 18 mm (LSM02,
Thorlabs Inc., NJ). The beam diameter incident on the objective is 3.49 mm, and the effective
numerical aperture (NA) was thus 0.097. This resulted in a diffraction-limit lateral resolution
(spot size) [39] of 8.6 µm, whereas the lateral resolution numerically simulated by OpticStudio
(Zemax) is 8.9 µm. We refer to this objective as a high-NA objective. The other objective, a
low-NA objective (LSM03, Thorlabs Inc., NJ) had an effective focal length of 36 mm. The
effective NA of 0.048 results in a diffraction-limit lateral resolution is 17.2 µm, whereas the
numerically simulated resolution is 18.1 µm.

Each B-scan comprises 512 A-lines covering a lateral scanning range of 1 mm, and the lateral
pixel separation is 1.95 µm. The axial resolution of our system is 14.1 µm and the axial pixel
separation is 7.24 µm in tissue. These axial and lateral pixel separations are identical to those of
the numerically generated speckle patterns (Section 2.1).

The measurements were performed for several values of probe beam attenuation, namely 0 dB,
−5.4 dB, and −11.76 dB (for round trip). The probe power on the sample was 12 mW with 0-dB
attenuation.
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3. Results

3.1. Numerical validation

All DCNN-based parameter estimators show high consistency between the set and estimated
parameters as shown in Fig. 2. Figure 2(a)-(e) are for the scatterer density, ENS, lateral and axial
resolutions, and SNR, respectively. The horizontal axes represent the set parameters whereas the
vertical axes show the estimates.

Fig. 2. Numerical validation of the parameter estimations of scatterer density (a), ENS (b),
lateral resolution (c), axial resolution (d), and SNR (e). The horizontal and vertical axes
give the set (true) values and the estimates, respectively. The red lines show the perfect
estimation.

The root mean square errors (RMSEs) of the estimations are 0.113 scatterers/µm3 for the
scatterer density, 3.06 scatterers for the ENS, 1.78 µm for the lateral, 1.88 µm for the axial
resolutions, and 1.82 dB for the SNR. These RMSEs correspond to 0.23%, 6.15%, 3.58%, 3.79%,
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and 3.65% of the estimation ranges, respectively. Here, the estimation ranges are the ranges of
each parameter in the speckle generation. R2 values of a model “estimate = true value” are 0.955
for the scatterer density, 0.985 for the ENS, 0.947 for the lateral resolution, 0.951 for the axial
resolution, and 0.985 for the SNR. The estimators therefore give the reasonable estimates of the
parameters.

3.2. Scattering phantom

3.2.1. Scatterer density estimation

Figure 3 shows the example OCT B-scans of the scattering phantom with the concentration
of 0.227%(v/v), where Figs. 3(a) and 3(b) are obtained with the high- and low-NA objectives,
respectively. We process these images using the scatterer density estimator having a sliding
window of 16 × 16 pixels and computed the average scatterer density within the Intralipid
region. Figure 4 shows the average scatterer density at each scatterer concentrations for each of
three probe-beam attenuations. Figures 4(a) and 4(b) show results for the high-NA and low-NA
objectives, respectively. Three phantoms were measured for each concentration, and the error
bars in the plots represent the standard deviations among the three measurements of the three
samples.

Fig. 3. Example OCT images of a scattering phantom with a concentration of 0.227%(v/v).
(a) and (b) are images obtained with the high- and low-NA objectives, respectively.

It is found that the results are consistent for the high- and low-NA objectives. It is also
noteworthy that the estimations are not affected by the probe beam attenuation, i.e., the probe
power. This suggests that the estimator does not estimate the scatterer density from the OCT
signal strength.

The estimated scatterer densities have a linear relationship with the concentration. The average
slopes of the three measurements (three phantoms) are 0.5622 (for −0 dB attenuation), 0.5436
(−5.4 dB), and 0.5577 (−11.76 dB) µm−3/%(v/v)for the high-NA objective, and 0.5560 (−0 dB),
0.5587 (−5.4 dB), and 0.5415 (−11.76 dB) µm−3/%(v/v)for the low-NA objective.

We can compute the scatterer size from these slopes as discussed in detail in Section 4.1. The
intercepts of plots are found not to be zero, although the ideal intercept is zero. The intercepts
are 1.23 (for −0 dB attenuation), 1.20 (−5.4 dB), and 1.20 (−11.76 dB) µm−3 for the high-NA
objective, and 1.26 (−0 dB), 1.23 (−5.4 dB), and 1.25 (−11.76 dB) µm−3 for the low-NA objective.
This issue is discussed in Section 4.4.

To evaluate the depth dependency of the scatterer density estimation, the estimated scatterer
densities are averaged along the lateral direction (red lines in Fig. 5). Here, the data correspond
to those in Fig. 3 and the concentration is 0.227%(v/v). The blue lines indicate the average OCT
intensity and the region between the dashed lines is the region of the Intralipid. The strong OCT
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Fig. 4. Scatterer density estimation of the Intralipid phantoms with several volume
concentrations. (a) and (b) are the results obtained with the high- and low-NA objectives,
respectively, and the color represent different attenuation of the probe beam. The error bars
depict the standard deviations for three measurements of three phantoms.

signals at just beneath the Intralipid region (dash line) are from black mending tape placed at the
bottom of the Petri dish.

Fig. 5. Depth profiles (blue lines) and the estimated scatterer density (red lines) of the
phantom shown in Fig. 3.

It is found that the estimated scatter densities are almost constant along the depth, and they are
consistent among the NAs. It is also found that the estimated scatterer densities are independent
of the average OCT intensity. The mean scatterer densities in the Intralipid region are 1.37
scatterers/µm3 and 1.35 scatterers/µm3 for the high- and low-NA objectives, respectively, i.e., the
difference is only 1.5%.

Attenuation coefficients or the signal attenuation rate along the depth are frequently used to
evaluate the scattering property of a sample. The attenuation rates of these data are computed
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through linear regression of the OCT intensity as −24.8 dB/mm (for the high-NA) and −6.8
dB/mm (for the low-NA). This relatively large inconsistency (8%) is accounted in part by the
different focus positions and the different depth-of-focuses of the two measurements.

3.2.2. Resolution estimation

Figure 6 shows the resolution estimation results of the scattering phantom. The data correspond
to those of Fig. 3. The blue regions indicate the region of Intralipid.

Fig. 6. Resolution estimates of scattering phantoms (0.227%(v/v)). The first and second
columns are for the high- and low-NA objectives, and the first and second rows show the
lateral and axial resolutions, respectively. The blue background indicates the Intralipid
region.

The average estimates of the lateral resolution over the Intralipid region were 9.6 µm and 18.8
µm for the high- and low-NA objectives, respectively [Fig. 6(a) and 6(b)]. These estimates are
close to the numerically simulated in-focus lateral resolutions of 8.9 µm (high NA) and 18.1
µm (low NA). It is also noteworthy that the lateral resolution of the high-NA objective shows
significant depth dependency. This can be accounted for by the short depth of focus (88.7 µm
in theory and 95.0 µm by Zemax simulation, in air), whereas the depth of focus of the low-NA
objective is relatively long (355.0 µm in theory and 392.8 µm by Zemax simulation, in air).

The average axial resolution estimates are 14.1 µm and 13.9 µm, respectively for the high- and
low-NA objectives [Fig. 6(c) and 6(d)]. These estimates are close to the true depth resolution of
14.1 µm.

3.3. Time-course evaluation of a tumor spheroid

The scatterer density estimator is applied to the time-lapse images of an in vitro human breast
cancer spheroid measured up to 28 hours after the extraction from the cultivation environment
(Fig. 7). The first and second rows [Fig. 7(a) and (b)] show the conventional OCT and scatterer
density image, respectively. It is noted that the estimation window is relatively large, i.e., 31.2 µm
(lateral) × 115.8 µm (depth), in comparison with the spheroid size (around 400 µm in diameter),
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and the estimates at the spheroid periphery are thus not exactly reliable. Figures 7(c) and 7(d)
show the tissue dynamics images [36] for reference. Figure 7(c) presents the “logarithmic
intensity variance” (LIV), which is primarily sensitive to the magnitude of the signal intensity
fluctuation, i.e., it is sensitive to the magnitude of the intracellular motility. Figure 7(d) presents
the “OCT correlation decay speed at early delay time” (OCDSe), which reflects the speed of the
signal decorrelation. OCDSe has a large value if there is a rapid motion in the cell. These images
are reprinted from our previous publication [36].

Fig. 7. Time-lapse images of a human breast adenocarcinoma spheroid (MCF7): (a)
conventional OCT, (b) scatterer density images obtained using the DCNN-based scatterer
density estimator, (c) magnitude of the signal fluctuation (LIV), (d) decorrelation speed of
the OCT signal (OCDSe).

Figure 8 shows the time courses of the average OCT intensity (a), scatterer density (b), LIV
(c), and OCDSe (d) in regions of interest (ROI) around the center of the spheroid. The size of
the ROI is lateral 117 µm × axial 144.8 µm (60 × 20 pixels). The bars in the plots indicate the
standard deviations.

The conventional OCT intensity [Fig. 7(a)] does not change appreciably over 28 hours and the
average OCT signal intensity [Fig. 8] fluctuates with time and does not have a clear tendency.
Meanwhile, the region with high scatterer density (green) rapidly becomes small over the first
8 hours [Fig. 7(b)]. Additionally, the average scatterer density [Fig. 8(b)] rapidly reduces over
the first 8 hours. The low LIV region (red) and high OCDSe region (yellow to green) became
large with time [Fig. 7(c) and (d)]. Additionally, the average LIV gradually reduces with time
[Fig. 8(c)]], but this reduction is slower than that of the scatterer density [Fig. 8(b)].

The low LIV and high OCDSe are thought to indicate cell necrosis [36,40]. The main scatterers
in the cell are cell nuclei and cell organelles, and the rapid reduction of the scatterer density
therefore suggests the destruction of nuclei and organelles during necrosis.
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Fig. 8. Time courses of the average OCT intensity (a), scatterer density (b), LIV (c), and
OCDSe (d) in the central region of the spheroid (lateral 117 µm × axial 144.8 µm).

4. Discussion

4.1. Scatterer diameter of the Intralipid

The scatterers of the Intralipid are the particles of soybean oil and egg lecithin [33–35]. Assuming
the scatterer particles are spherical, the scatterer density (the number of scatterers per unit
volume) of the Intralipid dilution can be computed as

Scatterer density =
σ

4π/3 (d/2)3
, (3)

where σ is volume concentration of the scattering medium and d is the diameter of the scatterer
particle. Using this equation, the diameter of scatterer particle can be computed from the slope
of the relation between the scatterer density and σ as

d = 3
√︁

6/(π slope). (4)

In our Intralipid phantom measurements (Section 3.2.1), the slope of the relation between the
scatterer density and σ is found to be 0.5533 ± 0.0086 µm−3/%(v/v), or equivalently 55.33 ±

0.86 µm−3/(v/v ratio) (mean ± standard deviation over three attenuations and two NAs). The
diameter of the scatterer particle is thus estimated to be 325.6 nm. Previously reported scatterer
particle diameters of Intralipid vary in the literature; e.g., 25 to 473.9 nm [35], 50 to 400 nm with
225.7-nm mean diameter [33], and 360 nm [34]. The diameter estimated in the present study is
well within the range of reported diameters.
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4.2. Benefits of numerically synthesized training data set

The present DCNN based estimators were trained by a numerically synthesized data set. The
numerical generation of the training data set has several advantages against experimentally
collecting a training data set.

At first, a massive amount of training data can be obtained with negligible cost. In the present
study, 1,280,000 2D speckle patterns extracted from 80,000 3D synthesized OCT volumes were
used for training (Section 2.2.1).

Second, the training data can have high diversity of the ground-truth fundamental parameter
values. For instance, all the 80,000 synthesized OCT volumes were generated with different
fundamental parameters in the present study. It might make the DCNN-based estimator robust.
If we achieve the same diversity of the ground-truth parameters with an experimental data set,
80,000 accurately fabricated phantoms are required, and it is not realistic.

Third, some of the fundamental parameters are not really controllable in the experiment. For
example, the lateral and axial resolutions are defined by the OCT device. And using massive
amounts of OCT devices to prepare the training data set with a variety of resolutions is not
realistic.

Finally, it is noteworthy that some of the fundamental parameters are hard to be accurately
controlled in the experiment. As pointed out by Kübler et al., the same recipe of the phantom
does not always give the same scattering property [41]. In addition, the resolutions are affected
by the aberrations, dispersion, wavelength-dependent absorption, and so on. And hence, it is
hard to control or know the accurate resolutions in the experiment.

4.3. Rationality of the estimation of the signal-strength-independent scatterer density

The speckle patterns and OCT images are normalized by intensity before being input to the
DCNN-based estimator, and the estimator therefore cannot use the overall signal strength to
estimate the scatterer density. This is consistent with the results shown in Fig. 4, where the
scatterer density estimates are not sensitive to the probe beam attenuation.

This signal-strength-independent estimation process is reasonable for the following reasons.
First, Hillman et al. showed that the contrast of a local speckle pattern has a unique and
monotonical relationship with the ENS, i.e., the number of scatterers per coherence volume that
is an alias of the 3D resolution [2]. This suggests that the ENS can be estimated from the speckle
contrast in principle.

In addition, if we know the size of the coherence volume, we can estimate the scatterer density
(i.e., the number of scatterers per unit volume) from the ENS. The size of the coherence volume
can be estimated if the axial and lateral resolutions are known. Kurokawa et al. showed that these
resolutions can be estimated through the spatial correlation analysis of a local speckle pattern [3].

That is to say, we can estimate both the ENS and the coherence volume size from the local
speckle pattern. Hence, estimation of the scatterer density without information of the overall
signal strength is possible in principle.

In the present study, the DCNN-based estimators successfully estimate the ENS and the
resolutions (Sections 3.2.1 and 3.2.2), which further supports the rationality of the estimation.

The forgoing discussion gives the idea that the scatterer density can be computed by combining
the speckle contrast analysis of Hillman and the correlation analysis of Kurokawa. However, it
is difficult to accurately compute the speckle contrast and correlation because of noise in the
speckle pattern. One strength of our DCNN-based estimator is that it can be trained to be robust
against noise by adding random noise to the speckle patterns of the training data set.

4.4. Limitation of the current estimators

The current estimation framework has limitations. First, the speckle generator does not consider
the size of the scatterers. The speckle generator uses a 3D numerical field in which the pixel size
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is 0.24 µm × 0.24 µm × 0.90 µm (lateral × lateral × depth), and a single scatterer correspond to
a single pixel. This limited accuracy of the scatterer representation can reduce the accuracy of
the estimation.

The second limitation is that the speckle generator does not account for depth-dependent signal
attenuation. That is to say, the signals in the deeper region are not affected by the scattering or
absorption in the superior region. Although we expect this effect to be small as the depth of the
generated speckle pattern is only 115.8 µm, the estimator accuracy could be further improved by
taking this effect into account.

Third, the sensitivity roll-off, depth-dependent variation of noise floor, and confocal effect [42]
were not accounted for in our speckle generator. These factors can affect the estimation accuracy
as it alters the SNR within the estimation window. However, for our small estimation window
whose depth size is 115.8 µm, the effects of these factors might be limited. The estimation
accuracy can be further improved by accounting these factors in the speckle generation process.

Fourth, in the speckle pattern generator, the scatterers are assumed to be static. Therefore, the
jiggle of the Intralipid scatters due to Brownian motion is not accounted for. In addition to the
above two limitations, this discrepancy would partially explain the non-zero intercept in Fig. 4.

Fifth, our study only considers fully developed speckle patterns and does not account for
partially developed speckles. Although this might limit the accuracy and the applicability of the
estimators, we believe our current estimators are still reasonable. It is because several previous
studies of OCT are based on the assumption of fully developed speckles, and they have given
reasonable results [1,2,43].

We expect further improvement of the speckle generator will increase the accuracy of the
estimators.

4.5. Effects of wavelength dispersion and polarization mode dispersion

In addition to the factors discussed in Section 4.4, wavelength dispersion and polarization mode
dispersion (PMD) are also not considered in our speckle generator. It is known that the wavelength
dispersion can be corrected numerically with image based metrics [44,45]. So, we can minimize
its undesirable effect by applying the numerical dispersion correction to the OCT image before it
is input to the estimators.

The PMD is known to deteriorate the OCT signal if the device is equipped with a very long
optical fiber and/or improper optical components such as some types of circulators. And its
undesirable effect is significant particularly for endoscopic polarization sensitive (PS-) OCT [46].
On the other hand, its effect is not significant for non-PS-OCT and non-endoscopic PS-OCT as far
as correct optical components are used. And hence, the present study might not be significantly
affected by the PMD. In order to apply our estimators to OCT with significant PMD, one of the
several PMD correction methods [47–50] can be applied prior to the estimation.

5. Conclusion

We demonstrated DCNN-based estimators for the scatterer density, ENS, lateral and axial
resolution, and SNR. The DCNN is trained using fully numerically generated OCT images
(i.e., speckle patterns) and was therefore trained easily using an extremely large training data
set comprising 1,280,000 images. Numerical validation showed the good performance of the
estimators. Additionally, validation with the scattering phantoms showed the feasibility of the
estimators in experiments. The scatterer density estimator was also applied to an in vitro tumor
spheroid, and the reduction of the scatterer density during cell necrosis was visualized.

In conclusion, the DCNN-based estimators successfully extract fundamental parameters
from a local speckle pattern. The scatterer density estimator can be used to quantify a cell
microstructure smaller than the OCT resolution. Furthermore, the resolution estimators can
be used as optimization metrics of image-based adaptive optics or computational aberration
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correction and also for the calibration of OCT systems, such as in highly accurate measurements
of the attenuation coefficient.
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